УДК 621.183

М. Г. УХАНОВА, инженер 1 кат. ОАО «НПО ЦКТИ», Санкт-Петербург, Россия;

Н. Н. ТРИФОНОВ, канд. техн. наук, доц.; зав. лаб. ОАО «НПО ЦКТИ»,

Санкт-Петербург, Россия;

Ф. А. СВЯТКИН, инженер-конструктор 1 кат. ОАО «НПО ЦКТИ»,

Санкт-Петербург, Россия;

С. Б. ЕСИН, инженер-конструктор 1 кат. ОАО «НПО ЦКТИ»,

Санкт-Петербург, Россия;

Е. Б. ГРИГОРЬЕВА, инженер-конструктор 3 кат. ОАО «НПО ЦКТИ»,

Санкт-Петербург, Россия

ОСОБЕННОСТИ МЕТОДИКИ РАСЧЕТА РЕГУЛИРУЮЩИХ КЛАПАНОВ, РАБОТАЮЩИХ НА ВСКИПАЮЩЕЙ ВОДЕ, ДЛЯ ПОДОГРЕВАТЕЛЕЙ ВЫСОКОГО ДАВЛЕНИЯ ОТЕЧЕСТВЕННЫХ И ЗАРУБЕЖНЫХ АЭС

В статье приведено описание предложенной ОАО «НПО ЦКТИ» методики расчета клапанов, регулирующих уровень в теплообменных аппаратах, и её особенности. Приведено описание предложенных конструкций новых регулирующих клапанов в сравнении с эксплуатирующимися в настоящее время, а также результаты расчетов технических характеристик клапанов и их влияние на работу подогревателей высокого давления камерного типа.

Ключевые слова: регулирующий клапан, подогреватель высокого давления, АЭС, методика расчета, дросселирование, вскипание.

Введение

Регулирующие клапаны (РК) подогревателей системы регенерации предназначены для регулирования уровня конденсата греющего пара в паровом пространстве корпуса подогревателей высокого давления (ПВД) путем частичного открытия или закрытия клапана в статических и динамических режимах работы турбоустановки.

Основанием для конструирования регулирующих клапанов служат данные гидравлического расчета. РК подогревателей высокого давления предназначены для регулирования уровня конденсата греющего пара в паровом пространстве корпуса ПВД путем открытия или закрытия клапана.

Особенностью РК является работа на вскипающем потоке, что приводит к интенсивному эрозионному износу проточной части и корпуса клапана, а также сопровождается кавитацией, шумом, вибрацией, которые снижают долговечность и надежность арматуры.

Анализ основных достижений и литературы

Для предотвращения вышеуказанных недостатков предложено двухступенчатое дросселирование вскипающего потока в конструкции РК: в первой ступени дросселируется переохлажденный конденсат — однофазная среда, а во второй — двухфазный поток. Следовательно, гидравлический расчет РК должен проводиться отдельно для каждой ступени.

Для однофазной среды в основе гидравлического расчета РК лежит уравнение расхода несжимаемой жидкости [1]

$$G = \mu F \sqrt{2g\Delta P\rho} , \qquad (1)$$

© М.Г. Уханова, Н.Н. Трифонов, Ф.А. Святкин, С.Б. Есин, Е.Б. Григорьева, 2014

где μ – коэффициент расхода; F – площадь проходного сечения клапана; ΔP – перепад давлений; g – ускорение свободного падения; ρ – плотность среды.

Для двухфазной среды формула для вычисления расхода выглядит иначе [1]

$$G = \mu F \sqrt{2 \frac{k}{k-1} P_1 \rho_1 \left(\varepsilon^{\frac{2}{k}} - \varepsilon^{\frac{k+1}{k}} \right)}, \qquad (2)$$

где k – показатель адиабаты; ϵ – отношение давлений.

Цель исследования, постановка задачи

Особенностью расчета расхода двухфазной среды является вычисление показателя адиабаты. На сегодняшний день существуют различные уравнения для определения k двухфазной смеси [1–5]. К настоящему моменту отсутствуют экспериментальные данные о достоверности этих уравнений при параметрах работы РК ПВД. ОАО «НПО ЦКТИ» предложена методика, использующая все уравнения для вычисления показателя адиабаты двухфазного потока, и из полученных значений выбирается наихудшее для данных условий эксплуатации, по которому и ведется дальнейший расчет.

Рис. 1 – Зависимость скорости звука от объемного соотношения фаз в смеси

Скорость двухфазного потока в клапане может достигать локальной скорости звука, которая зависит от объемного соотношения фаз в смеси, В, и может достигать 10-20 м/с (рис. 1) [2], при этом наступает критическое истечение. Из термодинамики известно, что при критическом истечении невозможно регулировать расход [1].

Поэтому в заключение расчета обязательно проводится проверка второй ступени РК на отсутствие критического истечения. Если же оно присутствует, то необходимо выполнить перераспределение давления на ступенях клапана.

Материалы исследования

Необходимым условием устойчивого поддержания уровня среды в теплообменном аппарате в статических и динамических режимах работы является линейная зависимость угла поворота золотника, ϕ , или хода штока, h, от расхода. В зависимости от режима работы клапана строится график функции изменения расхода, коэффициента расхода и перепада давлений на клапане от угла поворота или хода штока, характерный вид которого представлен на рис. 2.

Для получения линейной характеристики величина площади проходного сечения клапана разбивается на *п* элементов в зависимости от угла поворота или хода штока, для каждого участка. С помощью графика определяем площадь и строим профиль проходного сечения первой ступени дросселя РК. Таким образом, обеспечивается линейная характеристика клапана.

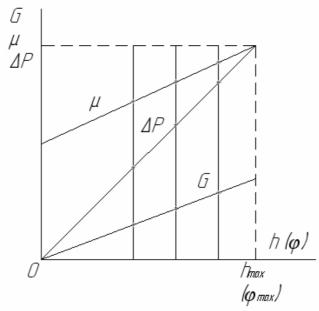
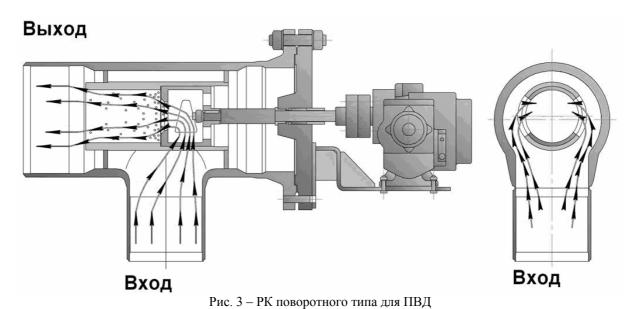



Рис. 2 – График функции изменения расхода, коэффициента расхода и перепада давлений на клапане от угла поворота

Вторая ступень дросселирования в РК рассчитывается с учетом вскипания потока.

Результаты исследования

ОАО «НПО ЦКТИ» разработаны РК поворотного типа для вскипающей воды (рис. 3) [6]. РК конструктивно выполнены в виде тройника с патрубками подвода и отвода воды и крышкой, на которой установлен привод оборотного типа. В корпусе расположена гильза из коррозионно-стойкой стали, внутри гильзы — золотник. В цилиндре золотника выполнены два окна, направленных друг против друга так, что при повороте золотника площади окон увеличиваются или уменьшаются одновременно. Для исключения эрозии в клапане золотник снабжён специальным кольцом.

Опыт эксплуатации и проведенные испытания двенадцати таких клапанов на блоках I и 2 Тяньваньской АЭС (Китай), а также АЭС «Бушер» (Иран) подтвердили хорошее качество регулирования в статических и динамических режимах работы блока, что обеспечивает удержание уровня в диапазоне ± 100 мм. Регулировочная характеристика близка к линейной в диапазоне от 5 до 100 %. Осмотр оборудования после 4 лет эксплуатации не выявил эрозионного износа элементов проточной части клапанов. Обнаруженные задиры в золотнике клапана при пуско-наладочных работах были устранены при плановом осмотре. Даны рекомендации по их исключению.

С целью исключения задиров и увеличенных зазоров в золотниках ОАО «НПО ЦКТИ» разработаны РК седельного типа для вскипающей воды со встроенным прямоходным электроприводом, с линейной регулировочной характеристикой. Это обеспечивает высокое качество регулирования и надежность.

Клапаны конструктивно выполнены в виде тройника с патрубками подвода и отвода воды и крышкой, которая при помощи фланцевого разъёма соединена с корпусом (рис. 4).

Выход

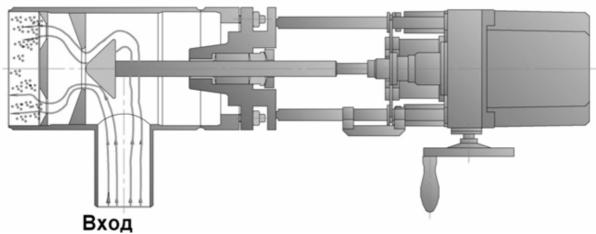


Рис. 4 – РК седельного типа для ПВД

В корпусе клапана расположен регулирующий орган, который состоит из штока с профилированным плунжером.

Клапан управляется встроенным электроприводом. При поступательном движении штока изменяется зазор между седлом и профилированным концом штока (площадь проходного сечения клапана), в результате чего происходит регулирование расхода среды через клапан.

Основная часть перепада давления клапана срабатывается на узле «седлопрофилированный плунжер».

Для исключения эрозии в выходном сечении клапана установлено специальное кольцо из коррозионно-стойкой стали с одним или несколькими отверстиями – дроссельное устройство. Это позволяет перенести процесс вскипания на выход из клапана за счет перераспределения перепада давления в клапане и уменьшает скорость потока в рабочем узле.

Выводы

- 1) Клапаны, регулирующие расход среды, близкой к состоянию насыщения, следует рассчитывать по методике двухступенчатого дросселирования для исключения вскипания среды в регулирующем органе с последующим эрозионным износом проточной части регулирующего клапана.
- 2) Во избежание запирания потока в регулирующем органе необходимо выполнять проверку результатов расчета регулирующего клапана на попадание в зону критического истечения вскипающего потока.

Список литературы: 1. *Благов*, Э. Е. Дроссельно-регулирующая арматура в энергетике [Текст] / Э. Е. Благов, Б. Я. Ивницкий. — М.: Энергия, 1974. — 264 с. **2.** *Фисенко*, *В. В.* Критические двухфазные потоки [Текст] / В. В. Фисенко. — М.: Атомиздат, 1978. — 160 с. **3.** *Белоконь*, *Н. И.* Термодинамика [Текст] / Н. И. Белоконь. — М.; Л.: Госэнергоиздат, 1954. — 416 с. **4.** *Новиков*, *И. И.* Показатель адиабаты насыщенного и влажного пара [Текст] / И. И. Новиков // Докл. АН СССР. Новая сер. — 1948. — Т. 59, № 8. — С. 1425. **5.** *Сычев*, *В. В.* Новое уравнение для показателя адиабаты влажного пара [Текст] / В. В. Сычев // Теплоэнергетика. — 1961. — № 3. — С. 67. **6.** Пат. № 2179330 Российская Федерация, МПК G05D7/00. Регулирующий клапан / Трифонов Н. Н., Лысенкова Н. Ю., Коваленко Е. В., Крючкова И. В.; Заявитель и патентообладатель НПО ЦКТИ. — № 96105876/09; заявл. 28.03.1996; опубл. 10.02.2002, Бюл. № 4. — 5 с.

Bibliography (transliterated): 1. Blagov, Je. E., and B. Ja. Ivnickij. *Drossel'no-regulirujushhaja armatura v jenergetike*. Moscow: Jenergija, 1974. Print. **2.** Fisenko, V. V. *Kriticheskie dvuhfaznye potoki*. Moscow: Atomizdat, 1978. Print. **3.** Belokon', N. I. *Termodinamika*. – Moscow: Gosjenergoizdat, 1954. Print. **4.** Novikov, I. I. "Pokazatel' adiabaty nasyshhennogo i vlazhnogo para." *Dokl. AN SSSR. Novaja ser.* 59.8 (1948): 1425. Print. **5.** Sychev, V. V. "Novoe uravnenie dlja pokazatelja adiabaty vlazhnogo para." *Teplojenergetika* 3 (1961): 67. Print. **6.** Trifonov, N. N., et al. "Regulirujushhij klapan." Ru Patent 2179330 (MPK G05D7/00) 10 February 2002.

Поступила (received) 17.02.14